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ABSTRACT. The tests for zero partial association in a multidimensional contingency table
(suggested by Birch (1965) and later used by Wermuth (1976) for a more elaborate model-
searching strategy) have gained new importance with the introduction of the class of graphical
models. It is shown how these may be performed as exact conditional tests using as test criteria
either the ordinary likelihood ratio, the standard y* statistic or any other appropriate statistic (e.g.
incorporating ordinal properties of some of the categorical variables). A strategy for model check-
ing based exclusively on exact tests for zero partial asseciation, performed initially in the full table
and subsequently in appropriate marginal tables, is presented. An example of application of the
strategy is given, which illustrates that the usual approximate p-values are completely unreliable
for large sparse tables.
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1. Intreduction

This article considers the possibility of performing exact (or approximate) conditional tests of
certain hypotheses encountered in connection with the analysis of multidimensional contin-
gency tables.

Throughout the paper, the basic concepts and results for the log-linear models for contin-
gency tables will be assumed known (Andersen, 1974; Bishop er al., 1975; Lauritzen, 1982,
provide good introductions to the subject).

Consider an undirected graph, such as Fig. 1, that is a set of vertices and edges. It is shown by
Darroch er al. (1980) (DLS) that this graph may be identified with a log-linear model in the
following way.

A set of vertices of the graph is complete if all possible edges between the vertices in the set
are in the graph. A clique is defined as a maximal complete set, i.e. a complete set which cannot
be extended to a larger complete set by the addition of more vertices. In Fig. 1 [ABE], [ADE]
and [ACD] are cliques, whereas [ABDE] is not complete since the edge BD is not in the graph
and therefore [ABDET is not a clique.

Finally a log-linear model is identified with the graph by identifying the variables as the
vertices of the graph and the generators, specifying the minimal set of sufficient marginals, as
the set of cliques of the graph.

Models that can be generated in this way are called graphical models, and can be interpreted
in terms of conditional independence in the following fashion:

Fig. I. Interaction graph.
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Two variables that are not directly connected in the interaction graph are conditional
independent given the rest of the variables of the contingency table. In the example the vari-
ables B and C are conditional independent given variables A, D and E. Using the notation of
Dawid (1979) this relation may be written: {B_LC|A, D, E}.

We thus have three different ways of specifying the same graphical model:

1. By the generators or alternatively the minimal sufficient marginals of the models:
[ABEJ[ADE][ACD]

2. By statements concerning independence between pairs of variables given the rest of the
variables forming the table:

(BLC|ADE}~{B_LD|ACE}~{ELC|ABD)

3. By the interaction graph.

2. Properties of graphical models

An important property of the class of graphical models for multidimensional contingency
tables is that their specification only requires the fundamental statistical concept of conditional
independence.

The graphical models may be characterized as the class of models defined by assumptions
concerning conditional independence of pairs of variables given the values of the remaining
variables, without any further assumptions concerning a more simple (reduced) parametric
specification of the probabilities.

It is shown in DLS that it is possible to construct a statistical model from the conditional
independence properties alone and that the class of graphical models is a subclass of the
general class of hierarchical log-linear models. It also follows from DLS that any non-graphical
log-linear model may be regarded as a submodel of a minimal graphical model with some of the
higher order interactions vanishing, that is as a model with the same conditional independence
properties as the graphical model, but with a simpler parametric structure.

The interaction graph with vertices representing variables and missing edges representing
conditional independences is a powerful analytical and practical tool.

It should be emphasized that an interaction graph is more than a mere visualization of the
statistical model. It is in itself a mathematical model. It may be analysed using standard
graph-theoretical results and several important graph-theoretical concepts may be interpreted
in terms of the statistical model. The interaction graph thus facilitates a quick insight in the
properties of the statistical model under consideration and may thus be used both for the
planning and execution of the statistical analysis and for the interpretation of the results.

The three most important results are:

. That the generators or the minimal sufficient marginals are represented by the cliques of
the interaction graph.

2. That decomposability fully (in the case of a triagulated interaction graph) or partially
corresponds to decomposability of the statistical model (Sundberg, 1975).-

3. If two disjoint subsets, S; and S, are separated by a subset S5 in the sense that all paths
from S, to S, go through S,, then the variables in S, are conditional independent of those
in S, given the variables in S;. In the example B and C are not only conditional indepen-
dent given ADE, but also given AE or AD.
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The third property is especially important for the interpretation of the graphical model. It
says that the conditional independence is not only valid in the contingency table containing all
variables, but also in certain collapsed tables.

Both the theoretical and practical consequences of choosing the smaller class of graphical
models as the basis of the statistical analysis are discussed in further detail in Edwards &
Kreiner (1983), Edwards & Havranek (1985) and Whittaker (1982).

3. Bircl’s test for zero partial association

It follows directly from the definition of graphical models as models specified by the condition-
al independencies, that the problem of finding the “best” graphical model for a given contin-
gency table may be reduced to relatively few questions even when the number of possible
graphical models is quite large.

Disregarding the models where one or more variables are irrelevant the total number of
graphical models for a seven-dimensional contingency tables is 22! =2 097 152. The model may
be found however by examining at most 21 hypotheses of conditional independence for pairs of
variables (or at least for each pair, for which the hypotheses are relevant) given the rest of the
variables forming the contingency table.

These hypotheses correspond to the hypotheses of zero partial association (ZPA) discussed
by Birch (1965) and later used by Wermuth (1976) for a more elaborate model-searching
strategy. The analysis of contingency tables by graphical models may thus be seen to place
more emphasis on Birch’s test than is usually found in literature on the analysis of contingency
tables.

The six ZPA hypotheses which may be tested in a four-dimensional contingency table are
shown Table 1.

A convenient aspect of testing ZPA hypotheses in contingency tables of dimensions greater
than three is the fact that the conditioning variables may be combined into one categorical
variable. For the test of the first hypothesis in Table 1, the variables C and D may thus be
combined into one variable, X =CxD, with categories defined by all possible combinations of
the values of C and D.

Whatever the dimension of the original contingency table, the tests of ZPA hypotheses may
therefore always be treated as tests in a three-dimensional table.

Consider then a three-dimensional contingency table formed by variables A, B and X and the
ZPA hypothesis, A1B|X.

The generators for the model under the hypothesis are [AX] and [BX]. It follows from
principles of conditioning on ancillary statistics that the hypothesis should be evaluated with

Table 1. The hypotheses of conditional
independency for a four-way table formed
by four categorical variables A, B, C and

D.

Hypothesis Generators
1 {A1B|CD} [ACD][BCD]
11 {AL1C|BD} [ABD][BCD]

11 {ALD|BC} [ABC][BCD]
IV  {BLC|AD} [ABD][ACD]
v {BLD|AC}  [ABC][ACD]
VI {CLD|AB} [ABC][ABD]
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respect to the conditional distribution of the contingency table given the sufficient AX and BX
marginals. This and other conditional tests are discussed by Andersen (1974).

The three-dimensional table may be viewed as consisting of several “slices” of two-
dimensional AB tables, one for each level of the conditioning X variable, and conditioning with
respect to the AX and BX marginals may easily be seen to correspond to conditioning with
respect to the marginals in each of the two-dimensional slices. The conditional probability of
the three-dimensional table given the two-dimensional AX and BX marginals may therefore be
expressed as the product of the conditional probabilities for each “slice” given the correspond-
ing one-dimensional marginals, i.e. a product of generalized hypergeometric probabilities.

The conditional test may be performed according to the following algorithm:

A. Generate all tables with the given AX and BX marginals.

B. Calculate the appropriate test statistic for each table.

C. Calculate the conditional probability of each table.

D. Calculate the attained level of significance (p-value) as the sum of the conditional prob-
abilities for the tables which are at least as favourable to the alternative hypothesis
(according to the test statistic) as the observed table.

Note that the conditional approach makes it possible to use test statistics for which no
asymptotic results are available, for example tests using ordinal properties of the variables.

When the number of tables to be generated is too large to be economically implemented the
following procedure can be used.

A. Generate a random sample of tables according to the conditional distribution of the table
given the sufficient marginals. The tables may in the case of the ZPA hypothesis be
generated one slice at time because of the factorization property mentioned above. Each
slice may be generated using either the method of Agresti et al. (1979) and Boyett (1979)
or the faster (in the case of moderate or large samples) method of Patefield (1981). The
latter method is based on a factorization of the generalized hypergeometric distribution
for r x ¢ tables into a product of ordinary hypergeometric probabilities for 2 x 2 tables.
(This leads to a “one-cell-at-a-time generation of the cells of the slices.)

B. For each generated table the appropriate test statistics are calculated.

C. The attained level of significance is approximated as the number of generated tables
which are at least as favourable to the alternative as the observed table divided by total
number of tables generated.

The p-values determined in this way are of course not really exact, but may be viewed as
estimates of the exact p-values. As such they are of course subject to random error.

The estimate is based on binomial sampling and therefore unbiased. The accuracy of the
estimate may be evaluated by the confidence intervals of the binomial distribution.

To give a rough survey the 95% confidence intervals for certain sample sizes are given in
Table 2.

The primary reason to prefer the “estimated” p-values to the “asymptotic” p-values—both of
course being approximations to the true values—are

1. That the estimated p-values are unbiased while the behaviour of the asymptotic p-values
are somewhat aberrant especially in the case of the likelihood ratio statistic which tends to
reject substantially more often than is expected even for moderate samples (Fienberg,
1980). While several Monte Carlo studies have been reported very little is known about
the behaviour of the test statistics in the case of very large sparse tables. The known
results suggest that the asymptotic p-values systematically underestimate the p-values.
The unbiasedness of the estimated p-values therefore is an attractive feature.
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Table 2. 95% confidence limits of estimates of the exact conditional p-values

Number of generated tables

500 2000 5000

Estimated

p-value Lower Higher Lower Higher Lower Higher
0.500 0456 0.544 0.478 0.522 0.486 0.514
0.250 0214 0.290 0.232 0.269 0.238 0.262
0.100 0.077 0.129 0.088 0.114 0.092 0.108
0.050 0.034 0.073 0.041 0.060 0.044 0.056
0.030 0.018 0.049 0.023 0.038 0.025 0.035
0.020 0.011 0.036 0.015 0.027 0.016 0.024
0.010 0.004 0.023 0.006 0.015 0.007 0.013
0.005 0.002 0.016 0.003 0.009 0.003 0.007
0.001 0.000 0.010 0.0600 0.004 0.000 0.002

* Calculated according to formula (4.21) of Sachs {1982).

2. That the accuracy of the approximation of the estimated p-values may be controlled by
the statistician.

The behaviour of the estimated p-values is in other words known while the behaviour of the
asymptotic p-values in the case of very large sparse tables is at best the subject of conjecture.

We 1illustrate the conditional test with examples from a survey investigation on teachers in
the Danish primary school.

The first example presents a small table where the exact conditional distribution of the test
statistics may be determined.

In the second example a very large sparse table is analysed. This example is preceded by a
discussion on strategical aspects of the analysis of large sparse tables.

4. Example 1

Table 3 presents the distribution of 27 teachers with respect to their evaluation of the pupils in
spectfic classes. This variable is related to the number of pupils in the class and the teacher’s
evaluation of the possibilities of coping with the individual problems of the pupils.

Table 3. Distribution of 27 teachers according to evaluation of individual classes, number
of pupils in the class and the possibility of coping with the individual problems of the
pupils

(€ (B)

Possibility Number of (A)

of coping pupils . Frequency of restless pupils in class

with individual in the

problems class None Few Some/many Total

Good 12-19 4 1 0 5
20-30 1 2 0 3
Total S 3 0 8

Bad 12-19 1 13 1 15
20-30 0 2 2 4

Total 1 15 3 19
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It should be emphasized that the 27 teachers only represent a random sample of ca. 1% of
the teachers included in the study. The purpose of this example is to demonstrate the condition-
al test for zero partial association including both the exact evaluation of the attained signifi-
cance and the procedure for approximating the p-value by random sampling of conditional
tables. The real prob]ems connected with this kind of survey investigations are far better
represented in the following example 2.

The hypothesis to be considered here is the conditional independence of variables A and B
given C.

According to the conditional approach this hypothesis may be evaluated with respect to the
conditional distribution of appropriate test statistics given the sufficient AC and BC marginals.

Only the standard likelihood ratio statistic will be discussed in this example.

The likelihood-ratio statistic calculated for this hypothesis is 5.719. Because of the one zero
in the AC marginal, this value should be evaluated with respect to a y* distribution with 3 and
not 4 degrees of freedom. It should be noted, though, that this adjustment of degrees of freedom
is based on apparently intuitive arguments (e.g. Bishop et al,, 1975, pp. 114-116), and that no
formal arguments for this adjustment seem to have been published.

It should also be noted that an automatic use of adjusted degrees of freedom will lead to
meaningless results.

Consider for instance the two log-linear models, [AC][BC] and [A][BC].

The degrees of freedom for [AC][BC] against [ABC] should as noted above be adjusted
from 4 to 3.

As there are no zeros in the A and BC marginals, the degrees of freedom for [A][BC] against
[ABC] should not be corrected. The degrees of freedom for this test may easily be seen to be 6.

The likelihood ratio statistic for this hypothesis may according to standard results be
expressed as the sum of the likelihood ratio statistic for the first hypotheses and the likelihood
ratio statistic for the “conditional” hypothesis, [A][BC] against [AC][BC]. It follows from the
same standard results that the likelihood ratio statistic for [A][BC] against [AC][BC] should
be evaluated with respect to the y* distribution with 6 —3 =3 degrees of freedom.

It is intuitively clear, that this makes no sense, and it follows directly from results on
decomposability by Sundberg (1975) that the “conditional” test is equivalent to the test for
marginal independence in the AC table. It should therefore be evaluated with respect to the y?
distribution with 2 degrees of freedom.

The point may seem minor, but is nevertheless well worth noting since the adjustment of
degrees of freedom with respect to most saturated model are automatically calculated by the
standard programmes for contingency tables and used for the calculation of degrees of freedom
for hypotheses against non-saturated alternatives.

A total of 32 different tables may be found corresponding to the sufficient margins AC and
BC of the table given in Table 3.

For each of these tables the likelihood ratio statistic and the conditional probability was
calculated and the p-value determined as the sum of the conditional probabilities for all tables
with likelihood ratio observed values equal to or greater than the observed value of 5.719.

At the same time the exact p-value was approximated by estimates from 500, 2000 and 5000
random tables generated according to the conditional distribution given the sufficient
marginals.

The results are shown in Table 4 which also shows the asymptotic p-values according the y?
distribution with 3 degrees of freedom. It should be noted, that the 32 tables defined by the
sufficient marginals leads to only 26 different likelihood ratio values. In three cases the
likelihood ratio for different tables differed by less than 0.002, as noted in the table.
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Table 4. Exact conditional distribution of the likelihood ratio statistic for the
hypothesis of zero partial association between A and B

given the sufficient marginals

of table 3
p-Values
Estimated
number of tables generated
Likelihood
ratio Asymptotic* 500 2000 5000 Exact
0.76 0.8590 1.000 1.000 1.000 1.0000
2.20 0.5330 0.804 0.810 0.810 0.8110
249 0.4780 0.618 0.620 0.623 0.6230
3.92 (.2700 0.528 0.526 0.529 0.5280
3.991 0.2620 0.434 0.432 0.434 0.4340
45871 0.2050 0.348 0.347 0.346 0.3470
5.72% 0.1260 0.226 0.222 0.218 0.2210
6.01 0.1110 0.182 0.182 0.176 0.1780
6.31 0.0980 0.118 0.120 0.114 0.1150
7.81% 0.0500 0.084 0.087 0.082 0.0830
8.40 0.0380 0.056 0.056 0.054 0.0540
8.43 0.0380 0.034 0.034 0.032 0.0330
10.15 0.0170 0.026 0.028 0.028 0.6270
11.31 0.0100 0.022 0.023 0.024 0.0240
12.24% 0.0070 0.020 0.018 0.019 0.0180
12.74 0.0050 0.016 0.014 0.014 0.0140
13.97 0.0030 0.008 0.006 0.007 0.0070
14.54% 0.0020 0.006 0.005 0.006 0.0060
15.13 0.0020 0.002 0.001 0.002 0.0030
16.06 0.0010 0 0.001 0.001 0.0010
18.97 < 0.0005 ¢ 0 0 0.0005
19.59 - - - - < 0.0005
21.32 - - - - -
22.79 - - - - -
234] - - - - -
30.14 - - - - -

* Evaluated with respect to the ¥2 distribution with 3 degrees of freedom.

T Including two tables with slightly different likelihood ratio values.

I Two tables with equal likelihood ratio values.

5. A strategy for the analysis of large sparse tables

Several strategies for the analysis of multidimensional contingency tables by graphical models
have been suggested (Whittaker, 1982; Edwards & Kreiner, 1983; Edwards & Havranek, 1985).
As all strategies are based on likelihood ratio tests with the distributions of the test statistics
being approximated by the asymptotic x* distribution, the results of the initial steps of these

procedures are problematic, when the contingency table is large and sparse.

To overcome these problems the following strategy for the initial analysis 1s suggested.

1. All hypotheses of zero partial association between pairs of variables (

excluding of course

pairs of explanatory variables) are performed using “exact” conditional tests.

2. A base model is constructed as the graphical model defined by the conditional indepen-
dencies accepted in the first step.

3. The base model is analysed with respect to collapsibility and decomposability.

4. The results of the analysis of the base model is checked in collapsed marginal tables and
the base model revised according to the results of this analysis.

103
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From this point the analysis may proceed according to the general strategy adhered to
(not necessarily restricted to the class of graphical models) with all tests being performed in
collapsed marginal tables according to decomposability properties of the revised base model.

6. On collapsibility and the examination of the adequacy of graphical models

The suggestions for checking the adequacy of a graphical model are based on the assumption
that a model check should be primarily concerned with the basic properties of the model in
question. As the basic properties of the graphical models (both with respect to the statistical
analysis and with respect to the interpretation of the results of the analysis) are connected with
decomposability and collapsibility it follows that special care should be taken to ensure that
these properties are valid.

To facilitate the discussion it will be convenient to introduce the property of w-collapsibility
(for weak collapsibility) and certain related concepts in the following way.

Consider a multidimensional contingency table, a hierarchical log-linear model and three
distinct subsets of variables, A, B and C, with A containing at least two variables.

We will refer to the problem of estimating and testing with respect to the interactions
between the variables of the A-set as the A-problem.

The important topic of collapsibility, that s, the property that relations between a set of
variables may be studied by analysis of marginal tables, will in this context be discussed with
explicit reference to a given A-problem.

Two types of collapsibility will be defined: strong collapsibility corresponding to the kind of
collapsibility usually discussed in literature on collapsibility and separability of contingency
tables, and weak collapsibility admitting a more limited analysis of the A-problem in the
collapsed table than in the strongly collapsible case.

To simplify the discussion of these concepts and their implications for the analysis of the data
and interpretation of results, two corollary concepts will be defined: the order of and the
separators for the A-problem.

A model is said to be w-collapsible over C with respect to the variables in A if conditional
independence of the variables in A given B and Cis a sufficient condition for the conditional
independence of variables in A given only B.

We will call the variables of B the w-separators for the A-problem. In the interaction graph of
the model, the vertices representing the separators constitute a so-called cut-set cutting all
paths between vertices corresponding to the A-variables.

For a given model the contingency table will usually be w-collapsible in several different
ways with respect to a given problem.

It will be presumed that the question of how many or how few variables are needed for the
conditional independence to be valid is one of the primary conclusions which may be drawn
from the analysis. For this reason we find it convenient to define the w-order of the problem
concerning the variables in A in the following way:

The w-order of the A-problem is defined as the number of variables in a minimal set of
w-separators for the A-problem.

In many cases the w-order variables needed for the conditioning may not be uniquely
determined because the conditional independence between the A-variables may be implied by
the graphical model for several collapsed tables of the same minimal dimension.

The kind of collapsibility usually discussed in connection with contingency tables (Asmussen
& Edwards 1983; Lauritzen, 1982; Sundberg, 1975) is more restrictive than the weak collaps-
ibility discussed here. Loosely formulated this kind of collapsibility requires not only that
vanishing interactions in the full model vanishes in the collapsed model, but also that the values
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of non-vanishing interactions between A-variables (in the log-linear parametrization) are the
same in the full and the collapsed tables and that the likelihood ratio tests of hypotheses
concerning the interactions between the A-variables are the same in the full and the collapsed
tables. This kind of collapsibility will be denoted s-collapsibility (strong collapsibility). s-Order
and s-separators may be defined analogously to w-order and w-separators.

As s-collapsibility infers w-collapsibility it follows that w-order will be smaller than or equal
to corresponding s-order.

When conclusions concerning collapsibility, order and separators are considered important,
these conclusions should be carefully checked before the model is accepted. That is, the model
should not be accepted just because an analysis of the complete table deems it satisfactory, but
only if analyses of collapsed tables confirm the consequences inferred from the model.

The following procedure for the examination of the adequacy of the model is therefore
suggested:

1. Determine for all cases of conditional independence the w-order and the w-separators of

the conditional independent variables.

-.In the corresponding collapsed tables thus inferred, tests of conditional independence

should be performed.

3. The rejectance of the hypotheses of conditional independence should be considered as
evidence against the model. Depending on the overall evaluation of the mode] and the
importance of the hypotheses in question the model should be remedied by adding
interactions which makes the corresponding results concerning w-order and w-separators
invalid. It should be noted, that the inclusion of just one set of interactions may be
sufficient to explain the rejection of several different hypotheses of conditional indepen-
dence even when these hypotheses do not concern the conditional independence between
the variables whose interaction is added to the full model. Special care should therefore be
taken not to include more interactions than necessary to keep the full model as parsimoni-
ous as possible.

o

It should be noted that examination of the properties derived by s-collapsing in many cases
will be unnecessary, when the original strategy adhered to employs partitioned statistics, where
each possible model is evaluated with respect to already accepted models. In these cases the
likelihood ratio tests performed will in reality be tests in collapsed tables, and the s-collapsed
properties will therefore already have been checked. The only problem which may occur is the
technical problem of incorrect adjustment of degrees of freedom discussed above.

It is an immediate consequence of the properties of graphical models cited in the second
section of this article that w-collapsibility and related properties may be easily determined by a
graphical analysis of the interaction graph of the model. It i, as mentioned above, a question of
determining the minimal cut-set(s) separating a pair of vertices from the rest of the graph.
Algorithms for this problem exist (Kreiner (1987)), but in the case of graphs with relatively few
vertices it is easy to determine the cut-sets by visual inspection of the graph. The technique will
be illustrated in the following example where the strategy for model checking will be used in
connection with the initial analysis of a large sparse table. It should however be stressed, that
the strategy may be applied in any phase of the statistical analysis.
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7. Example 2

We illustrate the conditional test and the strategy for model checking with an example of data
from the survey investigation on teachers in the Danish primary school. The data were col-
lected in 1978 and comprised several different variables from which the following seven were
choosen for the present example:

A. Stress categorized as low, medium or high degree of stress.

B. Number of periods absent from work because of sickness categorized into no periods, 1-3
periods and more than 3 periods.

C. The degree to which the works seems overwhelming categorized into four categories: low
degree, general high degree, high degree specifically in relation to the educational tasks of
the teacher, and high degree specifically in relation to the social work of the teacher.

D. The degree to which the teacher found the work divided between too many classes, too
many subjects and/or too many shifts between classes pr. day (low, medium or high degree
of scatteredness).

E. Number of problems experienced (few, medium, many).

F. Urbanization classified according to four ordinal categories from low to high degree.

G. Sex.

A total of 2748 teachers were classified in the contingency table formed by the seven
variables. The table containing 2 592 cells is far too large to print in this format but have been
published in a research report from the Danish Institute for Educational Research (Kreiner,
1984a). Although we have more than one teacher per cell we have a typical example of a large
sparse table as the teachers are non-uniformly distributed with respect to all variables.

F and G will be considered explanatory variables and the other response variables. For this
reason the FG interaction will be included in all models considered in this analysis.

We notice also that all variables except overwhelmingness (C) are binary or ordinal.

The initial analysis were performed according to the strategy discussed above.

The first step consisted of tests of conditional independence of each pair of factors given the
other variables of the table.

Following this step the graphical model defined by the conditional independencies accepted
at the first step of the analysis were constructed and the adequacy of this model examined as
prescribed by the strategy presented above.

The test statistics used for this analysis were the likelihood ratio test, the standard y* test
and—in the case of two ordinal or binary variables—a partial y coefficient summarizing the
values of the Goodman—Kruskal y's calculated for each slice of the three-dimensional table
defined after stacking of the conditioning factors (Davis, 1967).

Exact conditional p-values (one-sided in the case of the partial y’s) were approximated {rom
random samples of 500 tables generated according to the above mentioned algorithm and the
hypotheses accepted if all the corresponding p-values were greater than 1%.

Included also in Table 5 are the approximate p-values determined by the asymptotic x2
distribution with the degrees of freedom adjusted to compensate for empty estimated cells as
suggested by Bishop et al. (1975).

The results are shown in Table 5 and Fig. 2.
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The hypotheses of conditional independence were rejected in 10 of the 20 cases leading to the
graphical model shown in Fig. 2 and with the generators (readily read off the interaction
graph):

[ABE][ACE][BDE][BEF][BFG].

E

Fig. 2. The interaction graph defined by the conditional independencies accepted in Table 5. Response
variables are represented by circles, explanatory variables by squares and interactions fixed in the model by
double edges.

Comparison with the confidence limits given in Table 2 shows that the “asymptotic” p-values
in most cases fall far below the lower 95% confidence limits of the “estimated” p-values.

Of further interest in Table 5 is the marked discrepancy not only between the exact and
“asymptotic” p-values, but also between the asymptotic p-values of the likelihood ratio and the
)52 test.

Table 5. Conditional tests of all zero partial association hypotheses for the contingency table classifying
teachers according to stress (A), absence (B), overwhelmingness (C), scatteredness (D), problems (E), urban-
ization (F) and sex (G). P, = exact conditional p-value; P, = asymptotic p-value

Degrees p-Values p-Values Comments

of AT
Hypothesis freedom LR p* P, %2 P* P, y P Ri
A1B|CDEFG 238 346.1 0.000 0000 3500 0000 0000 0396 0000 R
AL1C|BDEFG 251 3455  0.004 0000 3499 0.018 0000 - - R
A1DIBCEFG 221 2687 0314 0014 2554 0.280 0056  0.075 0.162 AT
A1EBCDFG 243 289.8 0306 0021 286.2 0222 0036 0277 0000 R
A1F|BCDEG 299 333.3 0.504  0.084 353.5 0.136 0017  0.061 0.110 At
A1G|BCDEF 140 190.1 0.614  0.003 1582 0460 0139 0169 0012 At
BLC|ADEFG 272 342.7 0442  0.002 290.5 0.640 0210 - - At
BLD|ACEFG 223 3204 0102 0000 2772 0.104  0.008 0.209  0.000 R
BLEIACDFG 246 335.8 0.184 0000  309.1 0.078 0.004 0170 0000 R
BLF|ACDEG 320 440.9 0046 0000 4324 0004 0000  0.153 0.000 R
BLCJACDEF 165 2684 0042 0000 2281 0.018 0.001 0.276  0.000 R
C1DJABEFG 260 325.1 0374 0004 2996 0318 0.045 - - At
CLE|ABDFG 284 3%6.6  0.004 0000 3673 0.060  0.001 - - R
C1lF|ABDEG 369 4216 0660 0030 4032 0538 0.107 - - AT
C1GJABDEF 178 2245 0997  0.010 178.1 0990 0483 - - At
D1E|ABCFG 241 4022 0000  0.000 3683 0.000  0.000 0341 0.000 R
D1F|ABDEG 291 359.8 0.778 0.004 3064 0844 0256  0.023 0290 At
D1 G|ABCEF 153 2082 0710  0.002 1710 0700  0.151 0.008 0.441 AT
ELFIACDEG 321 37114 0730  0.028 357.5 0.428 0.078  0.115 0.000 R
ELG|ABEDF 153 187.6 0930  0.030 1574 0999 0387  0.008 0.441 AT

* P,: calculated for 500 randomly generated tables.
+ A:acceptance.
1 R:rejection.
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Table 6. w-Collapsibility properties of the model given in Fig. 2

Conditional Marginal

independent conditional

variables w-Order separators independencies

A and D 2 BE ALD|BE*

Aand F 2 BE A LF|BE*

A and G 2 BE and BF A L G|BE and ALG|BF
Band C 2 AE BLC|AE*

Cand D 2 BE and AE C1D|BE and CLD|AE
Cand F 2 BE and AE CLF|BE and CLF|AE
Cand G 2 BE, BF and AE CLG|BE, CLG|BF and CLGJ|AE
D and F 2 BE D LF|BE*

D and G 2 BE and BF D_LGI|BE and D LG|BF
Eand G 2 BF ELG|BF*

* s-Collapsibility.

The second step of the analysis consists of

(a) Derivation of results concerning conditional independence in marginal tables for the
base model (Fig. 2) (w- and s-collapsibility).

(b) Treating these properties as hypotheses, the base model may be checked by the corre-
sponding tests of conditional independence in marginal tables, using the same methods
as in the first step of the analysis.

Table 6 summarizes the collapsibility properties of all cases of conditionally independent
variables. The w-order is in all cases found to be 2. The second step of the analysis will therefore
consist of tests in four-dimensional tables.

In five cases the collapsibility corresponded to a proper decomposition of the model, imply-
ing not only w-collapsibility but also s-collapsibility.

Consider for instance the case of the conditionally independent variables, A and D. The path
from A to D may be cut by the vertices/variables B and E, which therefore constitute the
w-separators of the AD problem.

To determine whether the collapsibility over C, F and G corresponds to a proper decomposi-
tion of the model it is—according to proposition 3.6 of Lauritzen (1982) or Theorem 2 of Kreiner
(1987)-sufficient to consider the boundary of each connected component in the subgraph
induced by these variables.

The CFG subgraph contains two connected components, [C] and [FG], with boundaries
given by respectively A and E, and B and E. As both these boundaries are complete in Fig. 2, 1t
follows that the graph may be decomposed into two parts containing respectively the A, D, B
and E variables and the C, F, G, B and E variables. The implied test of conditional indepen-
dence of A and D in the collapsed four-dimensional table is therefore equivalent to the test of
conditional independence of A and D in the complete table with the model defined by Fig. 2
with the AD interaction included as alternative.

Each of the above mentioned relationships corresponds to a marginal table found by collaps-
ing over three of the original seven variables.

The results of the (marginal) tests of these hypotheses are shown in Table 7.

In four of the 16 cases the hypothesis of marginal conditional independence were clearly
rejected indicating the necessity of including certain interactions in the base model.

Which interaction to include is however not necessarily implied from the results of Table 7.

To see this one has to consider the implications of adding only one interaction to the model.
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Table 7. Conditional tests of all zero partial associations accepted in the first step of the analysis (Table 5). All tests are

performed in tables collapsed as a consequence of the first step of the analysis

Degrees p-values p-Values Comments

of AT
Hypothesis freedom LR Pz P, 72 P¥ P, Y P* R
AL1D|BE 32 26.8 0.830 0.730 21.7 0.920 0.920 0.112 0.033 At
A1F|BE 54 472 0.830 0.730 47.6 0.710 0.720 —0.061 0.090 At
AL1G|BE 17 26.6 0.087 0.064 25.5 0.063 0.084 —0.176 0.000 R
A1G|BF 24 311 0.240 0.150 290 0220 0.220 —0.092 0.067 AT
BL1CJAE 48 65.5 0.067 0.047 71.3 0.044 0.016 - - At
CI1DJ|AE 45 76.6 0.003 0.002 76.4 0.046 0.002 - - R
CL1D|BE 44 67.7 0.016 0.012 65.1 0.043 0.021 - - At
CLlF|BE 72 92.0 0.116 0.056 83.3 0.106 0.093 - - At
CL1F|AE 72 108.6 0.003 0.003 104.5 0.003 0.007 - - R
CLlG|BE 24 29.8 0.310 0.190 26.1 0.350 0.350 ~ - AT
C1G|BF 35 48.1 0.160 0.069 40.7 0.210 0.230 - - At
CLG|AE 24 331 0.210 0.100 28.2 0.230  0.250 - - At
D 1F|BE 48 56.6 0.300 0.180 52.7 0.300 0.300 0.018 0.330 At
D.1G|BE 16 17.2 0.420 0.370 16.5 0.400 0.420 0.099 0.011 At
D1G|BF 24 39.7 0.026 0.023 39.1 0.014 0.027 0.130 0.001 R
ELlG|BF 24 414 0023 0.015 420 0013 0.013 0.068 0.075 At

* P.: calculated for 700 randomly generated tables.
T A:acceptance.
I R:rejection.

In the present example evidence was found against the conditional independence of variables
A and G, variables C and D, variables C and F, variables D and G. It therefore seems natural to
consider one or more of these interactions as candidates for inclusion in the model. It will not
however be necessary to include all four interactions.

Consider for instance the model with only the interaction between variables C and F
included. This model, [ABE][ACE][BDE]J[BEF][BFG][CEF], is shown in Fig. 3. It is easily
seen, that the inclusion of the CF interaction not only remedies the rejected hypothesis of
conditional independence between C and F, but also between variables A and G, which would
no longer be conditional independent given B and E (but only given B and F) and variables C
and D which, given the model shown in Fig. 3, are conditional independent given B and E, but
not given A and E.

The rejection of hypotheses in the second step of the analysis should in fact be interpreted as
evidence against the model shown in Fig. 2 as a whole and not necessarily as evidence against
hypotheses concerning specific interactions.

E

Fig. 3. The interaction graph of the model given in Fig. 2, with the CF interaction included. Response
variables are represented by circles, the explanatory variables by squares and interactions fixed in the
model by double edges.
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E

Fig. 4. The interaction graph of the model given in Fig. 2, with the CG interaction included. Response
variables are represented by circles, the explanatory variables by squares and interactions fixed in the
model by double edges.

This point is further stressed by the fact that in all four cases where the hypotheses of
conditional independence in marginal tables were rejected, the hypotheses concerning condi-
tional independence of the same variables in other marginal tables were accepted.

If you are looking for the most parsimonious model which fits the data it seems natural to
ask how few and which interactions it is necessary to include in the model to correct these
deficiencies.

The answer is that it is sufficient to consider one interaction, namely the one concerning the
C and G variables.

Although the hypotheses concerning the conditional independence of C and G were
accepted, the inclusion of the CG interaction in the model (Fig. 2) will automatically render the
four rejected hypotheses invalid.

As this is the only interaction, the inclusion of which has these consequences, we proceed to
accept the model with the CG interaction included as the most parsimonious graphical model
which gives a satisfactory description of the contingency table.

The model is shown in Fig. 4. It has generators [ABE][ACE][BDE][BEF][BFG][CG] and
is characterized by the conditional independence of the following pairs of variables:

A and D: Stress and scatteredness

A and F: Stress and urbanization

A and G: Stress and sex

B and C: Absence and overwhelmingness

C and D: Overwhelmingness and scatteredness
C and F: Overwhelmingness and Urbanization
D and F: Scatteredness and urbanization

D and G: Scatteredness and sex

E and G: Problems and sex

Subsequent checking of the model (Fig. 4) according to the same strategy as was used for the
model (Fig. 2) presents no evidence against the model. Details will not be given here.

8. Discussion

The computer programs developed for the conditional analysis of multidimensional contin-
gency tables have been applied in several different contexts.

The present example was chosen among several alternatives with the following two objec-
tives in mind:

1. Tt should demonstrate the use of the conditional methods in a situation where the asymp-
totic methods might be expected to fail.
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2. It should demonstrate the applicability of the methods for the analysis of a very large
table and thereby demonstrate that the use of these methods is more than an interesting
possibility.

The methods are, of course, not inexpensive and the price of computer resources is
responsible for the limited number of tables—in most cases 500—generated per test and thus also
responsible for a relatively low precision of the approximation of the p-values. The point
however is that the inaccuracy of the p-values is quite transparent, and that it is up to the
statistician alone to decide how precise the approximation should be (subject only to possible
economic constraints). The same cannot be said of the asymptotic p-values, which may be very
imaccurate even in cases where the asymptotic approximations could reasonably be expected to
be adequate (see for instance some of the cases of tests in four-dimensional tables given in
Table 7).

In addition the following conclusions may be drawn from the above analysis:

1. That the partial Goodman-Kruskal gamma in several cases disclose interactions indect-
able by the likelihood ratio or ¥ tests.

2. That the asymptotic p-values of the likelihood tests in (almost) all cases are smaller than
the asymptotic p-values of the y” test which are again smaller than the exact p-values.
The use of asymptotic p-values will thus typically lead to the rejections of too many
hypotheses.

3. A marked discrepancy between the asymptotic p-values of the likelihood ratio and y?
tests, leading in many cases to markedly different results of the analysis. This discrepancy
does not occur in connection with the exact p-values. An observed difference between
p-values found from respective likelihood ratio and y? tests calculated for the same
hypotheses may in fact be taken as a warning that the asymptotic properties are invalid.

4. That the discrepancy between exact and asymptotic p-values disappears at a much
quicker rate for the y? test than for the likelihood ratio test.

Programs

Computer programs written in ALGOL for conditional analysis of contingency tables of
dimension up to but not exceeding seven and programs for the graph-theoretical analysis of
interaction graphs have been implemented at the Regional Computing Centre at the University
of Copenhagen (Kreiner, 1984b and 1987). Copies are available from the author. A PLI version
of the programs has been implemented at the County Hospital of Copenhagen.
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